幼小数字思维:谁在英语科目中取得了第二名(难题)
逻辑思维题内容:
在一次多学科竞赛中,共测试M个科目,一所学校中有三名学生甲、乙、丙参加了这场竞赛,在每一科目中,第一、第二、第三名分别得X、Y、Z分,其中X、Y、Z为正整数,且X>Y>Z。最后甲总分得了22分,乙与丙均得了9分。而且乙在数学科目中取得了第一名。
求M的值,并问谁在英语科目中取得了第二名?
答案:考虑三人得的总分,有方程:
M(X+Y+Z)=22+9+9=40①
又X+Y+Z≥1+2+3=6②
所以6M≤M(X+Y+Z)=40,从而M≤6。
由题设可知,至少有数学科目和英语科目两个科目,从而M≥2。逻辑思维训练
又M可以被40整除,所以M可取2、4、5。
考虑M=2,则只有英语科目和数学科目,而乙数学科目第一,但总分仅9分,故必有:9≥X+Z,X≤8,这样甲不可能得22分。
若M=4,由乙可知:9≥X+3Z,又Z≥1,所以X≤6,若X≤5,那么四项最多得20分,甲就不可能得22分,故X=6。
由于4(X+Y+Z)=40,所以Y+Z=4。
故有:Y=3,Z=1,甲最多得3个第一,一个第二,一共得分3×6+3=21<22,矛盾。
若M=5,这时由5(X+Y+Z)=40,得:X+Y+Z=8。
若Z≥2,则:
X+Y+Z≥4+3+2=9,矛盾,故Z=1。
又X必须大于或等于5,否则,甲5次最高只能得20分,与题设矛盾,所以X≥5。
若X≥6,则Y+Z≤2,这也与题设矛盾,所以X=5,Y+Z=3,即Y=2,Z=1。
甲=22=4×5+2。
故甲得了4个第一,1个第二;
乙=9=5+4×1,
故乙得了1个第一,4个第三;
丙=9=4×2+1,
故丙得了4个第二,1个第三。
而在数学科目中,乙得了第一,得第三的一定是丙,由于甲没得过第三名,也就是说甲的那个第二名是数学科目。
所以英语科目中得了第二名的一定是丙了。
相关阅读
拓展阅读
思维拓展网提供各类逻辑思维题目及答案,通过逻辑思维题大全中各类经典智力思维逻辑题、推理题帮助用户加强逻辑思维训练、提高逻辑思维水平、改善逻辑思维能力。
如果你有其他有关逻辑思维的好题目,欢迎与我们分享